106 research outputs found

    Machining Fibre Metal Laminates and Al2024-T3 aluminium alloy

    Get PDF
    The present thesis investigates the machining performance of an aerospace structural material commercially known as GLARE fibre metal laminate and its metal constituent aluminium Al2024-T3 aerospace alloy using commercially available solid carbide twist drills. The objective is to quantify the effects of the cutting parameters and two modern coolant technologies on cutting forces and a number of hole quality parameters. The generated drilling cutting forces, quality of machined hole and drilling-induced damage and defects when drilling GLARE fibre metal laminates were experimentally studied. Drilling-induced defects and damage investigated were surface roughness, burr formation at both sides of the workpiece and interlayer burr, hole size and circularity error, chip formation as well as damage described at the macro level (delamination area) using computerised tomography (CT) scan, and at the micro level (fibre matrix debonding, chipping, adhesions, cracks) using scanning electron microscopy (SEM). The experimental results have been statistically analysed using full factorial and response surface methodology statistical techniques to generate multiple regression models which makes it attractive as an indirect tool predicting the machining outputs prior the start of actual tests. Moreover, the analysis of variance (ANOVA) was employed to determine the percentage contribution of drilling parameters on cutting forces and hole quality outputs. The results indicated that the presence of coolant during the drilling process of GLARE could significantly improve hole quality. The use of cryogenic liquid nitrogen was found to eliminate the formation of waste on the borehole surface and burr formation at the hole exit. Using minimum quantity lubrication coolant was found to reduce the workpeice temperature compared to dry drilling at room temperature. Both coolants reduced the surface roughness compared to dry drilling but increased the cutting forces especially when using cryogenic liquid nitrogen. The cutting parameters results indicated that a maximum operating feed rate of 300 mm/min and a maximum spindle speed of 6000 rpm is recommended for superior hole quality results. Moreover, drilling at or below those levels of cutting parameters did not lead to severe delamination or fibre pull outs in the laminate compared to the higher cutting parameters used in the study. In addition, the fibre orientation and workpiece thickness were found to play a significant role on surface roughness and hole size but did not have a considerable impact on cutting forces due to the small thickness of glass fibre layers in the laminate. Adhesion and built up edge was found to be the main wear mechanism when drilling monolithic aluminium alloy, while adhesion and abrasion of the primary and secondary facets of the drill were identified to be the main wear process that occurs in drilling GLARE laminates

    The effect of drilling parameters, cooling technology and fibre orientation on hole perpendicularity error in fibre metal laminates

    Get PDF
    Conventional twist drilling is a widely used machining process for creating holes in aerospace and automobile structures. Drilling at room temperature can sometime affect the quality of machined holes due to increased thermal effects on the workpiece. Thermal effects can be a cumbersome when machining composites and fibre metal laminates due to their different thermal expansion coefficients, which may introduce additional stress in the structure. Thermal machining effects can be minimised using coolants supplied either directly or indirectly to the cutting tool-workpiece interaction zone, to remove away part of the generated heat. The use of coolants adds extra costs for handling, disposal and environmental impact. Therefore, environmentally friendly cooling technologies are replacing conventional cooling methods to reduce costs and impact on the environment. In addition, the selection of machining parameters has great influence on the hole quality. This paper investigates the impact of drilling parameters and two modern cooling technologies namely cryogenic liquid nitrogen and minimum quantity lubrication on the hole perpendicularity error of fiber metal laminates commercially known as GLAREĀ®. It was also found that applying cryogenic liquid nitrogen or minimum quantity lubrication does not lead to an improvement in hole perpendicularity error in GLAREĀ® laminates

    Multi-hole simultaneous drilling of aluminium alloy: a preliminary study and evaluation against one-shot drilling process

    Get PDF
    Poly-drill heads are used in mass production to increase productivity when a large number of holes are required. In this work, drilling experiments on Al5083 aluminium alloy were carried out using a poly-drill head to measure the thrust force and assess hole quality. Analysis of chip formations and post-machining tool condition were evaluated using optical microscopy. Additional drilling tests were conducted using one-shot drilling and results obtained from the two drilling techniques were evaluated against each other. The results showed that the average thrust forces obtained from poly-drill head were slightly lower than those from one-shot drilling. Improvement in hole quality in terms of surface roughness and reduction in chip length were achieved using the poly-drill head. Furthermore, visual inspection of the tools showed that adhesion and built-up edges on drills used in the poly-drill head were lower as compared to drills used in the one-shot drilling. The contribution of input parameters on the measured outputs was determined using an ANOVA statistical tool

    A review: drilling performance and hole quality of aluminium alloys for aerospace applications

    Get PDF
    Despite the growth of composites and other lightweight materials, aluminium alloys remain an attractive choice of the aerospace industry due to their mature manufacturing processes, good resistance to fatigue crack growth and superior damage tolerance. In the aerospace industry, the drilling process is the most challenging among all the other machining process as millions of holes are required for producing riveted and bolted joints in the assembly operation of the aircraft\u27s structures. The major challenges which arise from the drilling of these alloys are characterized by the poor hole quality which might initiate cracks within the airframe structure and reduces their reliability. This results in the rejection of parts at the assembly stage which directly impacts the manufacturing cost. Hence, appropriate selection of tool geometry, tool material and coatings, optimal cutting speed and feed rate, as well as drilling machines, is required to meet the requirement of machined parts. This motivates both academia and industries to further research on the application of drilling operations in the aircraft industry. This review aims to document details on drilling forces, drilling parameters, drill tool geometry, drill materials and coatings, chips formation, analysis of tool wear and hole metrics such as the hole size and circularity error, surface roughness, and burrs formation during the drilling of different aluminium alloys used in the aerospace industry. The focus will be mainly on Al2024 and Al7075 alloys since they are most commonly used and reported in the open literature

    Recent advances in drilling of carbon fiberā€“reinforced polymers for aerospace applications: a review

    Get PDF
    Drilling is considered as one of the most challenging problems in aerospace structures where stringent tolerances are required for fasteners such as rivets and bolts to join the mating parts for final assembly. Fiber-reinforced polymers are widely used in aeronautical applications due to their superior properties. One of the major challenges in machining such polymers is the poor drilled-hole quality which reduces the strength of the composite and leads to part rejection at the assembly stage. In addition, rapid tool wear due to the abrasive nature of composites requires frequent tool change which results in high tooling and machining costs. This review intended to give in-depth details on the progress of drilling of fiber-reinforced polymers with special attention given to carbon fiberā€“reinforced polymers. The objective is to give a comprehensive understanding of the role of drilling parameters and composite properties on the drilling-induced damage in machined holes. Additionally, the review examines the drilling process parameters and its optimization techniques, and the effects of dust particles on human health during the machining process. This review will provide scientific and industrial communities with advantages and disadvantages through better drilled-hole quality inspection

    Effect of machining parameters and cutting tool coating on hole quality in dry drilling of fibre metal laminates

    Get PDF
    Fibre metal laminates (FMLs) are a special type of hybrid materials, which consist of sheets of metallic alloys and prepregs of composite layers stacked together in an alternating sequence and bonded together either mechanically using micro hooks or thermally using adhesive epoxies. The present paper contributes to the current literature by studying the effects of three types of cutting tool coatings namely TiAlN, AlTiN/TiAlN and TiN on the surface roughness and burr formation of holes drilled in an FML commercially known as GLAREĀ®. While the cutting tool geometry is fixed, the study is also conducted for a range of drilling conditions by varying the spindle speed and the feed rate. The obtained results indicate that the spindle speed and the type of cutting tool coating had the most significant influence on the achieved surface roughness metrics, while tool coating had the most significant effect on burr height and burr root thickness. The most important outcome for practitioners is that the best results in terms of minimum roughness and burr formation were obtained for the TiN coated drills. However, such drills outperform the other two types of tools, i.e. with TiAlN and AlTiN/TiAlN coatings, only when used for short series of hole drilling due to rapid tool deterioratio

    Optimization and modeling of process parameters in multi-hole simultaneous drilling using taguchi method and fuzzy logic approach

    Get PDF
    In industries such as aerospace and automotive, drilling many holes is commonly required to assemble different structures where machined holes need to comply with tight geometric tolerances. Multi-spindle drilling using a poly-drill head is an industrial hole-making approach that allows drilling several holes simultaneously. Optimizing process parameters also improves machining processes. This work focuses on the optimization of drilling parameters and two drilling processes-namely, one-shot drilling and multi-hole drilling-using the Taguchi method. Analysis of variance and regression analysis was implemented to indicate the significance of drilling parameters and their impact on the measured responses i.e., surface roughness and hole size. From the Taguchi optimization, optimal drilling parameters were found to occur at a low cutting speed and feed rate using a poly-drill head. Furthermore, a fuzzy logic approach was employed to predict the surface roughness and hole size. It was found that the fuzzy measured values were in good agreement with the experimental values; therefore, the developed models can be effectively used to predict the surface roughness and hole size in multi-hole drilling. Moreover, confirmation tests were performed to validate that the Taguchi optimized levels and fuzzy developed models effectively represent the surface roughness and hole size
    • ā€¦
    corecore